Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 4(8): 101130, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37490914

RESUMO

Signal regulatory protein (SIRPα) is an immune inhibitory receptor expressed by myeloid cells to inhibit immune cell phagocytosis, migration, and activation. Despite the progress of SIRPα and CD47 antagonist antibodies to promote anti-cancer immunity, it is not yet known whether SIRPα receptor agonism could restrain excessive autoimmune tissue inflammation. Here, we report that neutrophil- and monocyte-associated genes including SIRPA are increased in inflamed tissue biopsies from patients with rheumatoid arthritis and inflammatory bowel diseases, and elevated SIRPA is associated with treatment-refractory ulcerative colitis. We next identify an agonistic anti-SIRPα antibody that exhibits potent anti-inflammatory effects in reducing neutrophil and monocyte chemotaxis and tissue infiltration. In preclinical models of arthritis and colitis, anti-SIRPα agonistic antibody ameliorates autoimmune joint inflammation and inflammatory colitis by reducing neutrophils and monocytes in tissues. Our work provides a proof of concept for SIRPα receptor agonism for suppressing excessive innate immune activation and chronic inflammatory disease treatment.


Assuntos
Colite , Neoplasias , Humanos , Fagocitose , Neoplasias/tratamento farmacológico , Neutrófilos/metabolismo , Inflamação/patologia , Colite/metabolismo
2.
Heliyon ; 9(3): e14238, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36950615

RESUMO

The ability of stem cells to rapidly proliferate and differentiate is integral to the steady-state maintenance of tissues with high turnover such as the blood and intestine. Mutations that alter these processes can cause primary immunodeficiencies, malignancies and defects in barrier function. The Rho-kinases, Rock1 and Rock2, regulate cell shape and cytoskeletal rearrangement, activities essential to mitosis. Here, we use inducible gene targeting to ablate Rock1 and Rock2 in adult mice, and identify an obligate requirement for these enzymes in the preservation of the hematopoietic and gastrointestinal systems. Hematopoietic cell progenitors devoid of Rho-kinases display cell cycle arrest, blocking the differentiation to mature blood lineages. Similarly, these mice exhibit impaired epithelial cell renewal in the small intestine, which is ultimately fatal. Our data reveal a novel role for these kinases in the proliferation and viability of stem cells and their progenitors, which is vital to maintaining the steady-state integrity of these organ systems.

3.
Eur Respir Rev ; 32(167)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36697211

RESUMO

Interleukin-33 (IL-33) and thymic stromal lymphopoietin (TSLP) are alarmins that are released upon airway epithelial injury from insults such as viruses and cigarette smoke, and play critical roles in the activation of immune cell populations such as mast cells, eosinophils and group 2 innate lymphoid cells. Both cytokines were previously understood to primarily drive type 2 (T2) inflammation, but there is emerging evidence for a role for these alarmins to additionally mediate non-T2 inflammation, with recent clinical trial data in asthma and COPD cohorts with non-T2 inflammation providing support. Currently available treatments for both COPD and asthma provide symptomatic relief with disease control, improving lung function and reducing exacerbation rates; however, there still remains an unmet need for further improving lung function and reducing exacerbations, particularly for those not responsive to currently available treatments. The epithelial cytokines/alarmins are involved in exacerbations; biologics targeting TSLP and IL-33 have been shown to reduce exacerbations in moderate-to-severe asthma, either in a broad population or in specific subgroups, respectively. For COPD, while there is clinical evidence for IL-33 blockade impacting exacerbations in COPD, clinical data from anti-TSLP therapies is awaited. Clinical data to date support an acceptable safety profile for patients with airway diseases for both anti-IL-33 and anti-TSLP antibodies in development. We examine the roles of IL-33 and TSLP, their potential use as drug targets, and the evidence for target patient populations for COPD and asthma, together with ongoing and future trials focused on these targets.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Humanos , Linfopoietina do Estroma do Timo , Imunidade Inata , Interleucina-33/uso terapêutico , Alarminas/uso terapêutico , Linfócitos/metabolismo , Citocinas/metabolismo , Citocinas/uso terapêutico , Inflamação , Pulmão , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico
4.
Crit Care Med ; 51(1): 103-116, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36519984

RESUMO

OBJECTIVES: Severe cases of COVID-19 pneumonia can lead to acute respiratory distress syndrome (ARDS). Release of interleukin (IL)-33, an epithelial-derived alarmin, and IL-33/ST2 pathway activation are linked with ARDS development in other viral infections. IL-22, a cytokine that modulates innate immunity through multiple regenerative and protective mechanisms in lung epithelial cells, is reduced in patients with ARDS. This study aimed to evaluate safety and efficacy of astegolimab, a human immunoglobulin G2 monoclonal antibody that selectively inhibits the IL-33 receptor, ST2, or efmarodocokin alfa, a human IL-22 fusion protein that activates IL-22 signaling, for treatment of severe COVID-19 pneumonia. DESIGN: Phase 2, double-blind, placebo-controlled study (COVID-astegolimab-IL). SETTING: Hospitals. PATIENTS: Hospitalized adults with severe COVID-19 pneumonia. INTERVENTIONS: Patients were randomized to receive IV astegolimab, efmarodocokin alfa, or placebo, plus standard of care. The primary endpoint was time to recovery, defined as time to a score of 1 or 2 on a 7-category ordinal scale by day 28. MEASUREMENTS AND MAIN RESULTS: The study randomized 396 patients. Median time to recovery was 11 days (hazard ratio [HR], 1.01 d; p = 0.93) and 10 days (HR, 1.15 d; p = 0.38) for astegolimab and efmarodocokin alfa, respectively, versus 10 days for placebo. Key secondary endpoints (improved recovery, mortality, or prevention of worsening) showed no treatment benefits. No new safety signals were observed and adverse events were similar across treatment arms. Biomarkers demonstrated that both drugs were pharmacologically active. CONCLUSIONS: Treatment with astegolimab or efmarodocokin alfa did not improve time to recovery in patients with severe COVID-19 pneumonia.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Adulto , Humanos , Interleucina-33 , SARS-CoV-2 , Proteína 1 Semelhante a Receptor de Interleucina-1 , Resultado do Tratamento
5.
Sci Transl Med ; 14(675): eabp9159, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36516271

RESUMO

The epidermis is a barrier that prevents water loss while keeping harmful substances from penetrating the host. The impermeable cornified layer of the stratum corneum is maintained by balancing continuous turnover driven by epidermal basal cell proliferation, suprabasal cell differentiation, and corneal shedding. The epidermal desquamation process is tightly regulated by balance of the activities of serine proteases of the Kallikrein-related peptidases (KLK) family and their cognate inhibitor lymphoepithelial Kazal type-related inhibitor (LEKTI), which is encoded by the serine peptidase inhibitor Kazal type 5 gene. Imbalance of proteolytic activity caused by a deficiency of LEKTI leads to excessive desquamation due to increased activities of KLK5, KLK7, and KLK14 and results in Netherton syndrome (NS), a debilitating condition with an unmet clinical need. Increased activity of KLKs may also be pathological in other dermatoses such as atopic dermatitis (AD). Here, we describe the discovery of inhibitory antibodies against murine KLK5 and KLK7 that could compensate for the deficiency of LEKTI in NS. These antibodies are protective in mouse models of NS and AD and, when combined, promote improved skin barrier integrity and reduced inflammation. To translate these findings, we engineered a humanized bispecific antibody capable of potent inhibition of human KLK5 and KLK7. A crystal structure of KLK5 bound to the inhibitory Fab revealed that the antibody binds distal to its active site and uses a relatively unappreciated allosteric inhibition mechanism. Treatment with the bispecific anti-KLK5/7 antibody represents a promising therapy for clinical development in NS and other inflammatory dermatoses.


Assuntos
Dermatite Atópica , Síndrome de Netherton , Dermatopatias , Camundongos , Humanos , Animais , Síndrome de Netherton/genética , Síndrome de Netherton/metabolismo , Síndrome de Netherton/patologia , Dermatite Atópica/patologia , Inibidor de Serinopeptidase do Tipo Kazal 5/metabolismo , Epiderme/patologia , Dermatopatias/metabolismo , Anticorpos/metabolismo , Calicreínas/metabolismo
6.
Sci Transl Med ; 14(627): eabf8188, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35020406

RESUMO

Exacerbations of symptoms represent an unmet need for people with asthma. Bacterial dysbiosis and opportunistic bacterial infections have been observed in, and may contribute to, more severe asthma. However, the molecular mechanisms driving these exacerbations remain unclear. We show here that bacterial lipopolysaccharide (LPS) induces oncostatin M (OSM) and that airway biopsies from patients with severe asthma present with an OSM-driven transcriptional profile. This profile correlates with activation of inflammatory and mucus-producing pathways. Using primary human lung tissue or human epithelial and mesenchymal cells, we demonstrate that OSM is necessary and sufficient to drive pathophysiological features observed in severe asthma after exposure to LPS or Klebsiella pneumoniae. These findings were further supported through blockade of OSM with an OSM-specific antibody. Single-cell RNA sequencing from human lung biopsies identified macrophages as a source of OSM. Additional studies using Osm-deficient murine macrophages demonstrated that macrophage-derived OSM translates LPS signals into asthma-associated pathologies. Together, these data provide rationale for inhibiting OSM to prevent bacterial-associated progression and exacerbation of severe asthma.


Assuntos
Asma , Oncostatina M/metabolismo , Animais , Asma/patologia , Humanos , Pulmão/patologia , Macrófagos/metabolismo , Camundongos , Muco , Oncostatina M/genética
7.
J Allergy Clin Immunol ; 148(3): 790-798, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33872652

RESUMO

BACKGROUND: The IL-33/ST2 pathway is linked with asthma susceptibility. Inhaled allergens, pollutants, and respiratory viruses, which trigger asthma exacerbations, induce release of IL-33, an epithelial-derived "alarmin." Astegolimab, a human IgG2 mAb, selectively inhibits the IL-33 receptor, ST2. Approved biologic therapies for severe asthma mainly benefit patients with elevated blood eosinophils (type 2-high), but limited options are available for patients with low blood eosinophils (type 2-low). Inhibiting IL-33 signaling may target pathogenic pathways in a wider spectrum of asthmatics. OBJECTIVES: This study evaluated astegolimab efficacy and safety in patients with severe asthma. METHODS: This double-blind, placebo-controlled, dose-ranging study (ZENYATTA [A Study to Assess the Efficacy and Safety of MSTT1041A in Participants With Uncontrolled Severe Asthma]) randomized 502 adults with severe asthma to subcutaneous placebo or 70-mg, 210-mg, or 490-mg doses of astegolimab every 4 weeks. The primary endpoint was the annualized asthma exacerbation rate (AER) at week 54. Enrollment caps ensured ∼30 patients who were eosinophil-high (≥300 cells/µL) and ∼95 patients who were eosinophil-low (<300 cells/µL) per arm. RESULTS: Overall, adjusted AER reductions relative to placebo were 43% (P = .005), 22% (P = .18), and 37% (P = .01) for 490-mg, 210-mg, and 70-mg doses of astegolimab, respectively. Adjusted AER reductions for patients who were eosinophil-low were comparable to reductions in the overall population: 54% (P = .002), 14% (P = .48), and 35% (P = .05) for 490-mg, 210-mg, and 70-mg doses of astegolimab. Adverse events were similar in astegolimab- and placebo-treated groups. CONCLUSIONS: Astegolimab reduced AER in a broad population of patients, including those who were eosinophil-low, with inadequately controlled, severe asthma. Astegolimab was safe and well tolerated.


Assuntos
Antiasmáticos/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Asma/tratamento farmacológico , Adulto , Antiasmáticos/efeitos adversos , Antiasmáticos/farmacocinética , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/farmacocinética , Asma/imunologia , Progressão da Doença , Método Duplo-Cego , Eosinófilos/imunologia , Feminino , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1/antagonistas & inibidores , Interleucina-33/antagonistas & inibidores , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Método Simples-Cego , Resultado do Tratamento
8.
Sci Signal ; 13(634)2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32487715

RESUMO

The dysregulation of multiple signaling pathways, including those through endosomal Toll-like receptors (TLRs), Fc gamma receptors (FcγR), and antigen receptors in B cells (BCR), promote an autoinflammatory loop in systemic lupus erythematosus (SLE). Here, we used selective small-molecule inhibitors to assess the regulatory roles of interleukin-1 receptor (IL-1R)-associated kinase 4 (IRAK4) and Bruton's tyrosine kinase (BTK) in these pathways. The inhibition of IRAK4 repressed SLE immune complex- and TLR7-mediated activation of human plasmacytoid dendritic cells (pDCs). Correspondingly, the expression of interferon (IFN)-responsive genes (IRGs) in cells and in mice was positively regulated by the kinase activity of IRAK4. Both IRAK4 and BTK inhibition reduced the TLR7-mediated differentiation of human memory B cells into plasmablasts. TLR7-dependent inflammatory responses were differentially regulated by IRAK4 and BTK by cell type: In pDCs, IRAK4 positively regulated NF-κB and MAPK signaling, whereas in B cells, NF-κB and MAPK pathways were regulated by both BTK and IRAK4. In the pristane-induced lupus mouse model, inhibition of IRAK4 reduced the expression of IRGs during disease onset. Mice engineered to express kinase-deficient IRAK4 were protected from both chemical (pristane-induced) and genetic (NZB/W_F1 hybrid) models of lupus development. Our findings suggest that kinase inhibitors of IRAK4 might be a therapeutic in patients with SLE.


Assuntos
Células Dendríticas/metabolismo , Endossomos/metabolismo , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Glicoproteínas de Membrana/metabolismo , Plasmócitos/metabolismo , Transdução de Sinais , Receptor 7 Toll-Like/metabolismo , Tirosina Quinase da Agamaglobulinemia , Animais , Endossomos/genética , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Glicoproteínas de Membrana/genética , Camundongos , Receptor 7 Toll-Like/genética
9.
Annu Rev Immunol ; 38: 249-287, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32340579

RESUMO

Since the birth of biotechnology, hundreds of biotherapeutics have been developed and approved by the US Food and Drug Administration (FDA) for human use. These novel medicines not only bring significant benefit to patients but also represent precision tools to interrogate human disease biology. Accordingly, much has been learned from the successes and failures of hundreds of high-quality clinical trials. In this review, we discuss general and broadly applicable themes that have emerged from this collective experience. We base our discussion on insights gained from exploring some of the most important target classes, including interleukin-1 (IL-1), tumor necrosis factor α (TNF-α), IL-6, IL-12/23, IL-17, IL-4/13, IL-5, immunoglobulin E (IgE), integrins and B cells. We also describe current challenges and speculate about how emerging technological capabilities may enable the discovery and development of the next generation of biotherapeutics.


Assuntos
Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Terapia Biológica , Desenvolvimento de Medicamentos , Animais , Produtos Biológicos/história , Terapia Biológica/história , Terapia Biológica/métodos , Biotecnologia/história , Biotecnologia/métodos , Ensaios Clínicos como Assunto , Desenvolvimento de Medicamentos/história , Descoberta de Drogas/história , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos , História do Século XX , História do Século XXI , Humanos
10.
J Med Chem ; 62(15): 7032-7041, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31283222

RESUMO

The pan-proteasome inhibitor bortezomib demonstrated clinical efficacy in off-label trials of Systemic Lupus Erythematosus. One potential mechanism of this clinical benefit is from the depletion of pathogenic immune cells (plasmablasts and plasmacytoid dendritic cells). However, bortezomib is cytotoxic against nonimmune cells, which limits its use for autoimmune diseases. An attractive alternative is to selectively inhibit the immune cell-specific immunoproteasome to deplete pathogenic immune cells and spare nonhematopoietic cells. Here, we disclose the development of highly subunit-selective immunoproteasome inhibitors using insights obtained from the first bona fide human immunoproteasome cocrystal structures. Evaluation of these inhibitors revealed that immunoproteasome-specific inhibition does not lead to immune cell death as anticipated and that targeting viability requires inhibition of both immuno- and constitutive proteasomes. CRISPR/Cas9-mediated knockout experiments confirmed upregulation of the constitutive proteasome upon disruption of the immunoproteasome, protecting cells from death. Thus, immunoproteasome inhibition alone is not a suitable approach to deplete immune cells.


Assuntos
Desenho de Fármacos , Imunidade Celular/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/síntese química , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Imunidade Celular/fisiologia , Complexo de Endopeptidases do Proteassoma/química , Inibidores de Proteassoma/farmacologia , Estrutura Terciária de Proteína
11.
J Immunol ; 202(7): 1935-1941, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30770417

RESUMO

IL-17 family cytokines are critical to host defense responses at cutaneous and mucosal surfaces. Whereas IL-17A, IL-17F, and IL-17C induce overlapping inflammatory cascades to promote neutrophil-mediated immunity, IL-17E/IL-25 drives type 2 immune pathways and eosinophil activity. Genetic and pharmacological studies reveal the significant contribution these cytokines play in antimicrobial and autoimmune mechanisms. However, little is known about the related family member, IL-17B, with contrasting reports of both pro- and anti-inflammatory function in rodents. We demonstrate that in the human immune system, IL-17B is functionally similar to IL-25 and elicits type 2 cytokine secretion from innate type 2 lymphocytes, NKT, and CD4+ CRTH2+ Th2 cells. Like IL-25, this activity is dependent on the IL-17RA and IL-17RB receptor subunits. Furthermore, IL-17B can augment IL-33-driven type 2 responses. These data position IL-17B as a novel component in the regulation of human type 2 immunity.


Assuntos
Imunidade Inata/imunologia , Interleucina-17/imunologia , Receptores de Interleucina-17/imunologia , Subpopulações de Linfócitos T/imunologia , Humanos , Inflamação/imunologia
12.
Nat Immunol ; 18(6): 633-641, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28459434

RESUMO

Microglia and other tissue-resident macrophages within the central nervous system (CNS) have essential roles in neural development, inflammation and homeostasis. However, the molecular pathways underlying their development and function remain poorly understood. Here we report that mice deficient in NRROS, a myeloid-expressed transmembrane protein in the endoplasmic reticulum, develop spontaneous neurological disorders. NRROS-deficient (Nrros-/-) mice show defects in motor functions and die before 6 months of age. Nrros-/- mice display astrogliosis and lack normal CD11bhiCD45lo microglia, but they show no detectable demyelination or neuronal loss. Instead, perivascular macrophage-like myeloid cells populate the Nrros-/- CNS. Cx3cr1-driven deletion of Nrros shows its crucial role in microglial establishment during early embryonic stages. NRROS is required for normal expression of Sall1 and other microglial genes that are important for microglial development and function. Our study reveals a NRROS-mediated pathway that controls CNS-resident macrophage development and affects neurological function.


Assuntos
Astrócitos/metabolismo , Sistema Nervoso Central/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Microglia/metabolismo , Células Mieloides/metabolismo , Doenças do Sistema Nervoso/genética , Proteínas/genética , Animais , Astrócitos/citologia , Western Blotting , Sistema Nervoso Central/citologia , Citometria de Fluxo , Imuno-Histoquímica , Coxeadura Animal/genética , Proteínas de Ligação a TGF-beta Latente , Locomoção , Macrófagos/citologia , Macrófagos/metabolismo , Proteínas de Membrana , Camundongos , Camundongos Knockout , Microglia/citologia , Células Mieloides/citologia , Postura , Fatores de Transcrição/genética , Incontinência Urinária/genética , Retenção Urinária/genética
16.
J Immunol ; 193(1): 111-9, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24879793

RESUMO

IL-13 can bind to two distinct receptors: a heterodimer of IL-13Rα1/IL-4Rα and IL-13Rα2. Whereas IL-13Rα1/IL-4Rα engagement by IL-13 leads to the activation of STAT6, the molecular events triggered by IL-13 binding to IL-13Rα2 remain incompletely understood. IL-4 can bind to and signal through the IL-13Rα1/IL-4Rα complex but does not interact with IL-13Rα2. Idiopathic pulmonary fibrosis is a progressive and generally fatal parenchymal lung disease of unknown etiology with no current pharmacologic treatment options that substantially prolong survival. Preclinical models of fibrotic diseases have implicated IL-13 activity on multiple cell types, including macrophages and fibroblasts, in initiating and perpetuating pathological fibrosis. In this study, we show that IL-13, IL-4, IL-13Rα2, and IL-13-inducible target genes are expressed at significantly elevated levels in lung tissue from patients with idiopathic pulmonary fibrosis compared with control lung tissue. IL-4 and IL-13 induce virtually identical transcriptional responses in human monocytes, macrophages, and lung fibroblasts. IL-13Rα2 expression can be induced in lung fibroblasts by IL-4 or IL-13 via a STAT6-dependent mechanism, or by TNF-α via a STAT6-independent mechanism. Endogenously expressed IL-13Rα2 decreases, but does not abolish, sensitivity of lung fibroblasts to IL-13 and does not affect sensitivity to IL-4. Genome-wide transcriptional analyses of lung fibroblasts stimulated with IL-13 in the presence of Abs that selectively block interactions of IL-13 with IL-13Rα1/IL-4Rα or IL-13Rα2 show that endogenously expressed IL-13Rα2 does not activate any unique IL-13-mediated gene expression patterns, confirming its role as a decoy receptor for IL-13 signaling.


Assuntos
Fibroblastos/imunologia , Regulação da Expressão Gênica/imunologia , Fibrose Pulmonar Idiopática/imunologia , Subunidade alfa2 de Receptor de Interleucina-13/imunologia , Interleucina-13/imunologia , Pulmão/imunologia , Transdução de Sinais/imunologia , Feminino , Fibroblastos/patologia , Estudo de Associação Genômica Ampla , Humanos , Fibrose Pulmonar Idiopática/patologia , Subunidade alfa1 de Receptor de Interleucina-13/imunologia , Interleucina-4/imunologia , Subunidade alfa de Receptor de Interleucina-4/imunologia , Pulmão/patologia , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Monócitos/imunologia , Monócitos/patologia , Fator de Transcrição STAT6/imunologia , Fator de Necrose Tumoral alfa/imunologia
17.
Nat Immunol ; 14(12): 1229-36, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24141388

RESUMO

Type 2 innate lymphoid cells (ILC2 cells) participate in host defense against helminth parasites and in allergic inflammation. Given their functional relatedness to type 2 helper T cells (T(H)2 cells), we explored whether Gfi1 acts as a shared transcriptional determinant in ILC2 cells. Gfi1 promoted the development of ILC2 cells and controlled their responsiveness during infection with Nippostrongylus brasiliensis and protease allergen-induced lung inflammation. Gfi1 'preferentially' regulated the responsiveness of ILC2 cells to interleukin 33 (IL-33) by directly activating Il1rl1, which encodes the IL-33 receptor (ST2). Loss of Gfi1 in activated ILC2 cells resulted in impaired expression of the transcription factor GATA-3 and a dysregulated genome-wide effector state characterized by coexpression of IL-13 and IL-17. Our findings establish Gfi1 as a shared determinant that reciprocally regulates the type 2 and IL-17 effector states in cells of the innate and adaptive immune systems.


Assuntos
Proteínas de Ligação a DNA/imunologia , Imunidade Inata/imunologia , Células Th2/imunologia , Fatores de Transcrição/imunologia , Transcriptoma/imunologia , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/imunologia , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Citometria de Fluxo , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/imunologia , Fator de Transcrição GATA3/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-13/genética , Interleucina-13/imunologia , Interleucina-13/metabolismo , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-17/metabolismo , Interleucina-33 , Interleucinas/farmacologia , Pulmão/imunologia , Pulmão/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Camundongos Transgênicos , Nippostrongylus/imunologia , Nippostrongylus/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de Interleucina/genética , Receptores de Interleucina/imunologia , Receptores de Interleucina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Infecções por Strongylida/imunologia , Infecções por Strongylida/parasitologia , Células Th2/metabolismo , Células Th2/parasitologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética
18.
Trends Immunol ; 33(7): 343-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22476048

RESUMO

Cutaneous and mucosal epithelial cells function as both a physical barrier and as immune sentinels against environmental challenges, such as microbial pathogens, allergens and stress. The crosstalk between epithelial cells and leukocytes is essential for orchestrating proper immune responses during host defense. Interleukin (IL)-17 family cytokines are important players in regulating innate epithelial immune responses. Although IL-17A and IL-17F promote antibacterial and antifungal responses, IL-17E is essential for defense against parasitic infections. Emerging data indicate that another member of this family, IL-17C, specifically regulates epithelial immunity. IL-17C production serves as an immediate defense mechanism by epithelial cells, utilizing an autocrine mechanism to promote antibacterial responses at barrier surfaces.


Assuntos
Células Epiteliais/imunologia , Interleucina-17/imunologia , Animais , Células Dendríticas/imunologia , Humanos , Imunidade Inata , Linfócitos/imunologia , Receptores de Interleucina-17/imunologia
19.
Nat Immunol ; 12(12): 1159-66, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21993848

RESUMO

Interleukin 17C (IL-17C) is a member of the IL-17 family that is selectively induced in epithelia by bacterial challenge and inflammatory stimuli. Here we show that IL-17C functioned in a unique autocrine manner, binding to a receptor complex consisting of the receptors IL-17RA and IL-17RE, which was preferentially expressed on tissue epithelial cells. IL-17C stimulated epithelial inflammatory responses, including the expression of proinflammatory cytokines, chemokines and antimicrobial peptides, which were similar to those induced by IL-17A and IL-17F. However, IL-17C was produced by distinct cellular sources, such as epithelial cells, in contrast to IL-17A, which was produced mainly by leukocytes, especially those of the T(H)17 subset of helper T cells. Whereas IL-17C promoted inflammation in an imiquimod-induced skin-inflammation model, it exerted protective functions in dextran sodium sulfate-induced colitis. Thus, IL-17C is an essential autocrine cytokine that regulates innate epithelial immune responses.


Assuntos
Comunicação Autócrina , Células Epiteliais/imunologia , Imunidade Inata/imunologia , Interleucina-17/metabolismo , Animais , Linhagem Celular , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Inflamação/imunologia , Inflamação/microbiologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Leucócitos/imunologia , Leucócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Ligação Proteica , Receptores de Interleucina-17/metabolismo , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/microbiologia , Transdução de Sinais , Pele/imunologia , Pele/metabolismo , Pele/patologia
20.
Immunology ; 134(1): 8-16, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21726218

RESUMO

The interleukin-17 (IL-17) cytokines, IL-17A to IL-17F, are emerging as critical players in host defence responses and inflammatory diseases. Substantial data support the role of these proteins in innate and adaptive immunity. Of these family members, IL-17A, IL-17F and IL-17E have been the best studied. Both IL-17A and IL-17F contribute to the host response to extracellular bacteria and fungi, and IL-17E has been shown to play a role in parasitic infections. In addition, numerous pre-clinical and clinical studies link these proteins to the pathogenesis of inflammatory diseases, and a number of therapeutic programmes targeting these family members are in clinical development. This review will highlight the cellular sources, receptors/target cells, and role in inflammation of these and the less-characterized family members, IL-17B, IL-17C and IL-17D.


Assuntos
Imunidade Adaptativa/fisiologia , Imunidade Inata/fisiologia , Inflamação/metabolismo , Interleucina-17/fisiologia , Animais , Humanos , Inflamação/etiologia , Receptores de Interleucina-17/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...